COMP4388: MACHINE LEARNING

Linear Regression - Part 2:

- Multivariate Regression
- Normal Equation
- · Other forms of regression models

Dr. Radi Jarrar Department of Computer Science

Dr. Radi Jarrar – Birzeit University, 2019

2

Linear Regress – Multiple Features

- How to handle the cases in which there is more than one feature?
- Area, Nr. Surrounding Roads, Distance from City Centre, ...
- Different features denoted as $x_1, x_2, x_3, ...$
- •x¹represents the order of the feature vector
- •x¹₃ represents the third feature of the first feature vector

LR – Multiple Features (2)

• With a single feature, the hypothesis was

$$h(x) = \partial + bx$$

• In the case of multiple features, the hypothesis becomes

$$h(x) = \partial + bx_1 + gx_2 + \dots$$

•For simplification, consider $x_0 = 1$ and the parameters as follows

$$h(x) = \partial_0 x_0 + \partial_1 x_1 + \partial_2 x_2 + \dots + \partial_n x_n$$

Dr. Radi Jarrar – Birzeit University, 2019

4

LR – Multiple Features (3)

•where $x=[x_0, x_1, x_2, x_3, ..., x_n]$

$$a = [a_0, a_1, a_2, a_3, ..., a_n]$$

• SO

$$h(x) = \partial_0 x_0 + \partial_1 x_1 + \partial_2 x_2 + \dots + \partial_n x_n$$

which is equivalent to

$$h(x) = \partial^T x$$

GD for Multiple Features

• Hypothesis: $h(x) = \partial^T x$

• Parameters: *a*

• Cost function $J(\alpha) = \frac{1}{N} \sum_{n=1}^{N} (h(x_n) - y_n)^2$

• Gradient decsent $a_j = a_j - F \frac{\P}{\P a_j} J(a)$

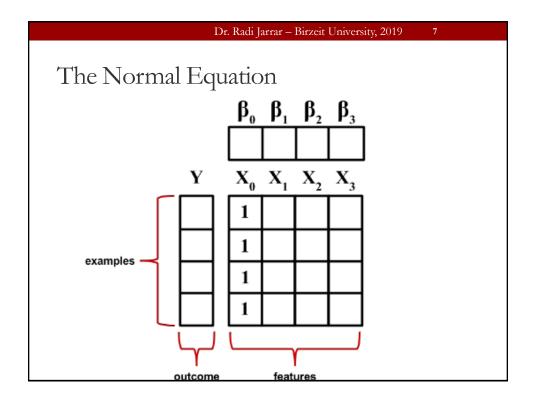
* Repeat GD and simeltanuosly update for every j=0, 1, ..., n

Dr. Radi Jarrar – Birzeit University, 2019

6

Learning rate

- When choosing a small value for the learning rate, the cost function has to decrease after every iteration
- If the learning rate is too small, GD can be very slow to converge
- If the learning rate is too large, the cost function may not decrease on every iteration (i.e., may not converge)
- Learning rate can be selected as 0.001, 0.01, 0.1, 1, 10, 100, ...



8

The Normal Equation (2)

• Matrix Algebra can be used to solve for vector β (that minimises the sum of squared errors between the predicted and actual y values)

$$\alpha = \left(X^T X \right)^{-1} X^T Y$$

Dr. Radi Jarrar – Birzeit University, 2019	Dr. Radi	Tarrar —	Birzeit	Unive	rsitv.	2019
--	----------	----------	---------	-------	--------	------

The Normal Equation (3)

Price(Y)	Area (m²)	Distan ce to CC	Nr. of Roads
40000	600	100	2
50000	650	50	2
60000	800	100	3
100000	1000	50	2
35000	600	300	1

•To represent it using the Normal Method, add x₀=1:

$$X = \begin{bmatrix} 1 & 600 & 100 & 2 \\ 1 & 650 & 50 & 2 \\ 1 & 800 & 100 & 3 \\ 1 & 1000 & 50 & 2 \\ 1 & 600 & 300 & 1 \end{bmatrix} \quad y = \begin{bmatrix} 40000 \\ 50000 \\ 60000 \\ 100000 \\ 35000 \end{bmatrix}$$

Dr. Radi Jarrar – Birzeit University, 2019

10

GD vs. Normal Equation

- GD
 - Should choose a value for the learning rate
 - Takes many iterations to find the optimal values
 - Works very well even if the dataset is large
- Normal Equation
 - No learning rate
 - No iterations needed
 - Computing X^TX takes O(N³)
 - Slow (especially with large datasets
 - → Use Normal equation if the number of features <1000

Feature scaling

- When using linear regression, features have to be normalised (i.e., scaled) to be on the same scale
- Gradient Descent converges much faster when the features are scaled

Dr. Radi Jarrar – Birzeit University, 2019

12

Benefits of Regression

- It indicates the significant relationsips between dependent and independent variables
- It indicates the strength of impact of multiple independent variables on a dependent variable

Is it always Linear?

- •Three metrics decide on the type of regression technique that can be used
- •These are:
 - number of independent variables
 - type of dependent variables
 - shape of regression line

Dr. Radi Jarrar – Birzeit University, 2019

14

Regression Technique - Linear Regression

- The most widely used modelling technique
- The dependent variable is continuous and the independent variables could be continuous or discrete
- The line is linear
- Obtaining the regression variables can be achieved via Least Squared Error

15

Regression Technique - Linear Regression (2)

- There must be a linear relationship between the dependent variable and the independent variable(s)
- Very sensitive to outliers
- In case of multiple independent variables, feature selection (forward selection, backward elimination, or step-wise approach) can be used to select the most significant independent variables

Dr. Radi Jarrar – Birzeit University, 2019

10

Regression Technique – Polynomial

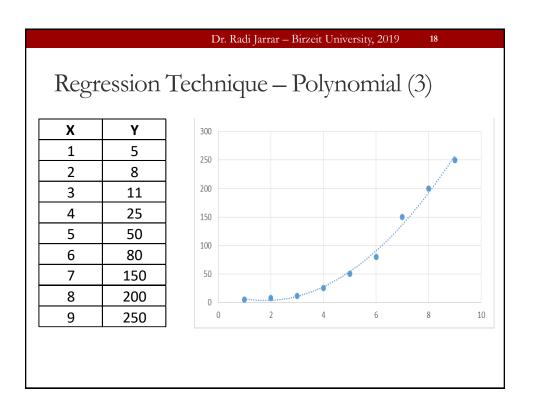
- Polynomial
 - Is used when the relation between the independent variables and the dependent variable is not linear
 - The best fit is not a straight line. It is rather a curve that fits into data points
 - 2nd degree

$$h(x) = \alpha + \beta \cdot x^2$$

• 3rd degree

$$h(x) = \alpha + \beta \cdot x^3$$

Dr. Radi Jarrar – Birzeit University, 2019 Regression Technique – Polynomial (2) Υ Χ -50 -100



Regression Technique – Polynomial (4)

- Fitting higher degree polynomial to get lower error could result in over-fitting
- Plot the relationship first

